HEPA FILTER VACUUM CLEANER TESTING

Contents

1.0 Purpose/Scope
2.0 Responsibilities
3.0 Definitions
4.0 Prerequisites
5.0 Precautions
6.0 Procedure
7.0 References
8.0 Attachments
9.0 Documentation

1.0 Purpose

This procedure provides standardization of the method used for the in-place efficiency testing of HEPA filters on portable vacuum cleaners at BNL. It also ensures the field tester safety from exposure to hazardous substances the vacuum cleaner has been used to collect.

2.0 Scope

High-efficiency particulate air (HEPA) filters are used on vacuum cleaners as air pollution control. Due to their general reliability and high level of performance, HEPA filters are commonly used to minimize the release of radioactive materials, asbestos, lead, beryllium, or other toxic particulates.

This procedure will be implemented through the SHSD Industrial Hygiene Group at the request of the owner of the equipment. Only persons who have demonstrated the competence by experience and training meeting the criteria set in IH-PP-8 may perform this test.

3.0 Definitions

HEPA Filter: A high efficiency particulate filter having a fibrous medium with a particle removal efficiency of at least 99.97% for 0.3-micron particles of dioctyl phthalate.

4.0 Prerequisites

4.1 Prior to testing a HEPA filter system, verify the calibration and operability of the test equipment.
4.2 Prior to testing a HEPA filter system, verify the qualification of the personnel conducting the test.

4.3 **Policy**

Filters that bear the marking “HEPA” are manufactured to remove \(\geq 99.97\% \) of the particles with a mean diameter of 0.3 um from an airstream. The manufacturer warrants the filter to meet these specifications. Upon installation into a vacuum cleaner, BNL policy is to test the installation of the filters. This phase of evaluation is known as “in-place” testing and is designed not only to validate the particle removal efficiency of the HEPA filter but also verify the integrity of associated seal, gasketing, and housing. Criteria for the acceptance of an in-place test is a particle removal efficiency of \(\geq 99.97\% \), i.e. not measurable leakage around the filter and not defects in the filter media.

The policy of the IH Group is to test equipment in accordance with the frequency requirements established in BNL Standard Based Management System Subject Areas, Standards, and program descriptions or as requested by owners of equipment.

BNL policy is to substitute the hazardous challenge agent Di-Octyl Phthalate, a recognized carcinogen, with a safer synthetic oil (Emery 3004).

5.0 **Precautions**

5.1 **Hazard Determination:** The operation of this meter involves exposure to a low hazard chemical (test aerosol) that does not pose a high exposure risk. The meter design does not cause significant ergonomic concerns in routine use. The aerosol used in the generator would constitute Hazardous Waste if disposed on in bulk. The intended use of the aerosol as a test agent does not constitute a hazardous environmental emission.

5.1.1 By its very nature, a HEPA test may be done in areas where chemicals or radiation contamination is known or suspected to be present. Inhalation of these contaminants can have significant health effects. These hazards must receive a hazard evaluation by a cognizant ESH professional.

5.2 **Personal Protective Equipment**

5.2.1 **Hand:** Contact with aerosol liquid should be minimized but does not pose a significant health risk. Use of this meter in areas of known or suspected chemical or radiological contamination requires the use of disposable gloves. Exam-style, splash gloves are acceptable. Acceptable elastomers are: Nitrile, PVC, and Natural Rubber.

5.2.2 **Body:** If contact of the body with contaminated surfaces is anticipated, a disposable suit should be used. Acceptable CPC materials include: Tyvek®,
KleenGuard®, and cotton. Disposable garments must be discarded as mercury waste if contact with contamination has occurred. If contact with potentially contaminated surfaces is not expected, body covering is optional. However, if personal clothing items become contaminated, they must be surrendered for BNL cleaning or disposal.

5.2.3 **Foot:** If contact of the feet is anticipated with contaminated surface, disposable shoe coverings, boots or booties should be used. Acceptable CPC material include: Tyvek®, KleenGuard®, and rubber. If contact with potentially contaminated surfaces is not expected, shoe coverings are optional. However, if personal shoes become contaminated, they must be surrendered for BNL cleaning or disposal.

5.2.4 **Respiratory:** Under normal use, respiratory protection is not required. If chemical or radiological levels from contamination in the area exceed the OSHA, ACGIH, or DOE standards, respirators are required. A half face or full face APR or PAPR respirator with appropriate cartridge or an air line respirators may be used up to assigned protection factor listed in the BNL’s Respiratory Protection Selection and Issuance SOPS.

5.2.5 **Eye:** Safety Glasses with side shields are required.

5.3 **Precautions in testing:**

5.3.1 **Do not open the Vacuum cleaner without engineering controls in place to prevent contact with the debris contents of the vacuum.**

5.3.2 **Do not use Dioctyl Phthalate, (DOP) as the challenge agent.**

6.0 Procedure

6.1 **Summary:** Filter efficiency is determined by challenging a HEPA filter with an aerosol and measuring the aerosol concentration both upstream and downstream to calculate the percentage removed by the filter system.

6.2 **Equipment:** Emery 3004 or alternative (challenge agent)
- Aerosol generator (see Attachment 8.2)
- Aerosol detector (see Attachment 8.3)
- Sampling train (Tygon tubing and probes)
- Source of clean, medium-pressure (e.g., 50-75 PSI) air

6.3 **Test Protocol**

6.3.1 **Setup – Nucon Aerosol Detector**

6.3.1.1 Open detector cover and plug in AC power cord.
6.3.1.2 Turn on detector power switch, allow 5-10 min. warm-up. (Warm-up photometer in the “clear” mode until a stable baseline reading is obtained.)
6.3.1.3 Perform setup procedure as per Sec. 4.0 in the Nucon Instrument manual.
6.3.1.4 Attach sample collection tubing to detector.
6.3.1.5 Self-calibrate and zero the instrument according to manufacturer’s procedures.

6.3.2 Setup- Nucon Generator
6.3.2.1 Remove aerosol generator from carrying case.
6.3.2.2 Connect air pressure regulator and injection flex pipe.
6.3.2.3 Connect airline hose to regulator. (Attach the compressed air supply line (from house air system, compressed gas cylinder, or portable air compressor) to the generator inlet regulator. The concentration of the challenge aerosol is a function of both the delivered air pressure and the volume of air exhausted through the ventilation system. For typical laboratory fume hood HEPA systems (e.g., air flows of about 1000-5000 ft³/min), the inlet regulator pressure should be adjusted to about 25 PSI. For significantly larger or smaller systems, the inlet pressure will need to be adjusted with the second state regulator to provide at least a four order-of-magnitude difference between upstream (challenge) and downstream concentrations. Note that manufacturer’s specifications limit on the maximum operating pressure for the generator is less than 100 PSI.)

6.3.3 Setup- HEPA vacuum cleaner
6.3.3.1 Prior to testing vacuum cleaner, ensure that RCD personnel have checked the vacuum cleaner for surface radiation contamination, any loose dust and debris and tested vacuum cleaner performance (unit is operable).
6.3.3.2 Connect vacuum cleaner hose and power cord
6.3.3.3 Enclose top of vacuum cleaner in a large plastic bag and secure with duct tape.
6.3.3.4 Put 4-6 holes in the bag using a pen or pencil to sample the air inside the bag (vacuum cleaner exhaust). The holes will also prevent the bag from bursting when the unit is turned on.

6.3.4 Testing
6.3.4.1 Place Nucon Aerosol Detector on cart and perform setup procedure.
6.3.4.2 Connect sampling lines to upstream and downstream ports.
6.3.4.3 Insert upstream probe into pre sampling port of the injection collection tube, which is mounted on the cart. Seal port with duct tape to prevent leaks.
6.3.4.4 Insert flex injection pipe from aerosol generator into injection end of the injection collection tube, (do not seal end).
6.3.4.5 Position the HEPA vacuum cleaner to be tested near the cart and insert vacuum cleaner hose into the output end of the injection collection tube. Seal plastic sleeve around the hose with duct tape.

6.3.4.6 Connect airline supply hose to supplied air source (compressed gas cylinder, house air system, or portable air compressor). Adjust supplied air pressure to the aerosol generator to (40psi-100psi).

6.3.4.7 Turn on HEPA vacuum cleaner to inflate the plastic bag. Run the vacuum cleaner for 1-2 minutes before testing to clear any dust from the motor to exit the bag.

6.3.4.8 Turn on air supply to aerosol generator, adjust air pressure gage on the aerosol generator to approx. 5psi. Injecting the aerosol into the injection collection tube.

6.3.4.9 Observe (pre) upstream reading on detector approx. 60 on the 10 range or 600. Enter data on the In-Place HEPA Filter Test Report form.

6.3.4.10 Place the downstream probe inside the inflated plastic bag to sample air exhausted from the vacuum cleaner. Survey with the probe around the exhaust ports and seals.

6.3.4.11 Measure upstream and downstream aerosol concentrations as follows:
 6.3.4.11.1 Measure upstream aerosol concentration
 6.3.4.11.2 Return to “clear” mode and re-zero instrument if necessary
 6.3.4.11.3 Measure downstream aerosol concentration
 6.3.4.11.4 Return to “clear” mode and re-zero instrument if necessary
 6.3.4.11.5 Repeat steps in 6.5.4.11 until sequential upstream and downstream readings are within ±5% of their previous readings

6.3.4.12 Record upstream and downstream concentrations. Enter data on the In-Place HEPA Filter Test Report form.

6.3.4.13 Repeat test Step 6.5.4.11 and record on the second entry line on the In-Place HEPA Filter Test Report form.

6.3.5 Calculations:
 6.3.5.1 Calculate particle removal efficiency of the filter as follows:

 \[
 \text{Removal Efficiency (\%) = } \frac{C_u - C_d}{C_u} \times 100
 \]

 Where: \(C_d \) = downstream aerosol concentration
 \(C_u \) = upstream aerosol concentration
6.3.5.2 Record data and findings on test report form (see Attachment 8.4). With the exception of the HFBR and BMRR, where test acceptability varies as a function of other effluent treatment system criteria, acceptable in-place HEPA filter removal efficiency results are $\geq 99.97\%$. Affix results sticker at test location, fume hood face, or other appropriate location.

6.3.6 Recordkeeping:
6.3.6.1 Remove old HEPA filter test tag. Attach a new HEPA filter test tag on the vacuum cleaner
6.3.6.2 Provide a copy of the HEPA filter test report to the ESH Coordinator, the Facility Support Representative and any other interested parties. The original test report will be retained by SHSD for 30 years.

6.3.7 Waste Disposal: Discard any un-used or used aerosol test liquid via the policy and procedures of the Waste Management Division. The liquid is a hazardous waste.

7.0 References:
7.1 IH SOP IH62300 In-Place HEPA Filter Testing
7.3 BNL S&EP Procedures, IH62200, HEPA Filter Surveillance Program.

8.0 Attachments
8.1 Figure 1: Diagram of HEPA Test Apparatus
8.2 Sample BNL HEPA filter system test report
8.3 HEPA filter system test results sticker/tag.
9.0 Documentation

Document Review Tracking Sheet

<table>
<thead>
<tr>
<th>PREPARED BY:</th>
<th>REVIEWED BY:</th>
<th>APPROVED BY:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(signature/date on file)</td>
<td>(signature/date on file)</td>
<td>(signature/date on file)</td>
</tr>
<tr>
<td>R. Wilson</td>
<td>R. Selvey</td>
<td>R. Selvey</td>
</tr>
<tr>
<td>Author</td>
<td>Group Leader</td>
<td>IH Group Leader or Division Head</td>
</tr>
<tr>
<td>Date 06/19/00</td>
<td>Date 06/23/00</td>
<td>Date 06/23/00</td>
</tr>
</tbody>
</table>

Filing Code: IH62SR.00

Effective Date: 06/23/00

Clone of IH-FP-6.1 that was reviewed by QA DQAR Date

Periodic Review Record

<table>
<thead>
<tr>
<th>Date of Review</th>
<th>Reviewer Signature and Date</th>
<th>Comments Attached</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/05/01</td>
<td>(signature/date on file)</td>
<td>Added SBMS Banner. Revised Precautions section adding Hazard Assessment, PPE, and Waste Disposal.</td>
</tr>
<tr>
<td></td>
<td>Robert Selvey 02/05/01</td>
<td></td>
</tr>
</tbody>
</table>

| 03/09/01 | (signature/date on file) | Renumbered from IH-FP-6.2 to new system IH623650. Text reviewed, minor format changes made. |
| | Robert Selvey 03/09/01 | |
Attachment 8.1
Figure 1: Diagram of HEPA Test Apparatus

- Plastic Bag
- Aerosol Generator
- Aerosol mixing tube
- Vacuum Cleaner
- Detector
- Compressed Air Supply
IH62350 ATTACHMENT 8.2
Brookhaven National Laboratory
Safety & Health Services Division
Industrial Hygiene Group

HEPA FILTER TEST REPORT
VACUUM CLEANER

<table>
<thead>
<tr>
<th>Aerosol:</th>
<th>Emery 3004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator:</td>
<td>Nucon F1000-SN-10</td>
</tr>
<tr>
<td>Serial No.</td>
<td>924SN1005392</td>
</tr>
<tr>
<td>Detector:</td>
<td>Nucon F1000-DDF</td>
</tr>
<tr>
<td>Serial No.</td>
<td>924DDF4592</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vacuum Cleaner ID</th>
<th>Upstream Reading</th>
<th>Downstream Reading</th>
<th>Removal Efficiency (%)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entered into Database:

Date:______________ By:______________

File Code: IH62SR. IH62350 (03/2001)
HEPA Filter System
Test Results Sticker/Tag

HEPA FILTER TEST: FAILED
Do NOT Use Vacuum Cleaner for Hazardous Substances

Test by: Date:
Unit ID:

Contact: Industrial Hygiene Group at x-3900 SHSD IH62350

HEPA Filter Test: PASSED

Test by: Date:
Unit ID:

Contact: Industrial Hygiene Group at x-3900 SHSD IH62350